Chémia koordinačných zlúčenín

Témy prednášok:

- •Úvod do predmetu CHKZ.
- •Stereochémia koordinačných polyédrov.

•Izoméria komplexov prechodných prvkov. Úvod do molekulovej symetrie.

- •Teória kryštálového poľa I.
- •Teória kryštálového poľa II. Teória ligandového poľa.
- •Stabilita a reaktivita koordinačných a organokovových zlúčenín.

Elektrostatická teória kryštálového poľa

- TKP je elektrostatický model, ktorý <u>využíva elektróny ligandu na vytvorenie elektrického poľa</u> okolo kovového centra. Donorové atómy sa považujú za záporné bodové náboje a TKP neuvažuje kovalentné interakcie medzi nimi a CA.
- *d*-orbitály majú rôznu priestorovú orientáciu a tak sú od ligandov aj rozdielne vzdialené. Kombináciou odpudzovania a rôznej orientácie d-orbitálov dochádza k tomu, že päť d-orbitálov v komplexoch nemá rovnakú energiu, d-orbitály sa štiepia a ich degenerácia sa sníma.

Oktaédrické kryštálové pole

Tri *d* orbitály (d_{xy}, d_{yz}, d_{zx}) ležia medzi osami kartézskej sústavy, zvyšné dva $(3d_{x^2-y^2} \text{ and } 3d_{z^2})$ ležia na osiach kartézskej sústavy.

Donorové atómy v oktaédrickom kryštálovom poli sú umiestnené na osiach kartézskej sústavy.

Oktaédrické kryštálové pole

hladín

d-

veličina

iii) vlastnosti ligandu - spektrochemický rad ligandov

 $I^{-} < Br^{-} < CI^{-} < SCN^{-} < F^{-} < OH^{-} < H_{2}O < NH_{2}CH_{2}COO^{-} << NH_{3} << en < bpy, phen < CI^{-} < NH_{2}CH_{2}COO^{-} << NH_{3} << en < bpy, phen < NH_{3} << en < NH_{3} << en$ $< \underline{\mathbf{O}} \mathbf{NO}^{-} < \underline{\mathbf{N}O}_{2}^{-} < \mathbf{PH}_{3} < \mathbf{CN}^{-} < \mathbf{CO}$

Stabilizačná energia kryštálového poľa CFSE

 $CFSE = [-0.4 \ n_1(t_{2g}) + 0.6 \ n_2(e_g)] \Delta_o + nP$

 n_1 počet elektrónov v orbitáloch t_{2g} n_2 počet elektrónov v orbitáloch e_g n počet <u>nových</u> elektrónových párov v orbitáloch t_{2g} a e_g vzhľadom na pôvodnú situáciu piatich degenerovaných *d*-orbitálov P – energia spárenia dvoch elektrónov

Energia

Elektrónová konfigurácia centrálneho atómu v oktaédrických komplexoch

Efektívny magnetický moment: $\mu_{
m ef} = \sqrt{n(n+2)} \ \mu_{
m B}$

n – počet nespárených elektrónov

Elektrónová konfigurácia centrálneho atómu v oktaédrických komplexoch

Literatúra [1] kap 2.4.2 ⁸

Stabilizačná energia kryštálového poľa CFSE

Ni²⁺: $3d^8$ [Ni(H₂O)₆]³⁺

Energia

 $CFSE = [-0.4 \ n_1(t_{2g}) + 0.6 \ n_2(e_g)] \ \varDelta_o + nP$

 n_1 počet elektrónov v orbitáloch t_{2g} n_2 počet elektrónov v orbitáloch e_{q}

n počet <u>nových</u> elektrónových párov v orbitáloch t_{2q} a e_q

vzhľadom na pôvodnú situáciu piatich degenerovaných d-orbitálov

P – energia spárenia dvoch elektrónov

Elektrónová konfigurácia centrálneho atómu v oktaédrických komplexoch

Vysoko- a nízkospinové oktaédrické komplexy

Vysoko- a nízkospinové oktaédrické komplexy

Vysoko- a nízkospinové oktaédrické komplexy

Oktaédrické kryštálové pole: Jahn-Tellerov efekt

- Pozoruje sa najmä pri elektrónových konfiguráciách <u>s nepárnym počtom elektrónov na energetickej hladine e_g</u> (napr. HS d⁴, LS d⁷, alebo d⁹).
- Prítomnosť jedného alebo troch elektrónov na orbitáloch e_g vedie k dodatočnému štiepeniu e_g a t_{2g} hladín a ku vzniku stlačenej alebo predĺženej tetragonálnej bipyramídy

Bond length a < e

Oktaédrické kryštálové pole: Jahn-Tellerov efekt

- Pozoruje sa pri elektrónových konfiguráciách s nepárnym počtom elektrónov na energetickej hladine eg (napr. HS d⁴, LS d⁷, alebo d⁹).
- Prítomnosť jedného alebo troch elektrónov na orbitáloch e_g vedie k dodatočnému štiepeniu e_g a t_{2g} hladín a ku vzniku stlačenej alebo predĺženej tetragonálnej bipyramídy

